Web of Science

Additional Resources

Search Cited Reference Search Advanced Search Search History

Web of Science®

< < Back to results list

■ Record 2 of 6

Record from Web of Science®

Development of a circulating system for a jet refrigeration cycle

Print E-mail Add to Marked List Save to EndNote Web

Save to EndNote, Ref Man, ProCite more options

Author(s): Srisastra P (Srisastra, Passakorn)¹, Aphornratana S (Aphornratana, Satha)¹, Sriveerakul T (Sriveerakul, Thanarath)²

Source: INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID Volume: 31 Issue: 5 Pages: 921-

929 **Published:** AUG 2008

Abstract: This paper proposed a workless-generator-feeding (WGF) system for a jet refrigeration cycle, using R141b. This feeding system does not require any mechanical power. The liquid refrigerant from the condenser was fed to the vapour-generator by means of the generator pressure and gravitational force. The system was tested and compared with a conventional system using a mechanical pump. It was found that this system was workable. The heat input to the generator was slightly higher than that for a system using a mechanical pump. The jet refrigeration cycle employing this new feeding system provided a slightly lower coefficient of performance (COP) compared to a system using a mechanical pump. However, this new system did not require any mechanical energy. Therefore, the jet refrigeration system employing this WGF system is truly a heat-power refrigeration cycle. (C) 2007 Elsevier Ltd and IIR. All rights reserved.

Document Type: Article

Language: English

Author Keywords: refrigeration system; ejector system; R-141b; design; supply; ejector; pump; generator; experiment; coefficent of performance (COP)

KeyWords Plus: EJECTOR COOLING SYSTEM; PERFORMANCE

Reprint Address: Aphornratana, S (reprint author), Thammasat Univ, Mech Engn Program, Sirindhorn Int Inst Technol, POB 22, Thammasat Rangsit PO, Pathum Thani 12121, Thailand

Addresses:

- 1. Thammasat Univ, Mech Engn Program, Sirindhorn Int Inst Technol, Pathum Thani 12121, Thailand
- 2. Ubon Ratchathani Univ, Dept Mech Engn, Ubon Ratchathani 34190, Thailand

E-mail Addresses: satha@siit.tu.ac.th

Cited by: 4

Marked List (0)

This article has been cited 4 times (from Web of Science).

Huang BJ, Yen CW, Wu JH, et al. Optimal control and performance test of solar-assisted cooling system APPLIED THERMAL ENGINEERING 30 14-15 2243-2252 OCT 2010

Huang BJ, Wu JH, Hsu HY, et al. Development of hybrid solar-assisted cooling/heating system ENERGY CONVERSION AND MANAGEMENT 51 8 Sp. lss. SI 1643-1650 AUG 2010

Kasperski J Rotational type of a gravitational ejector refrigerator - A system balance of the refrigerant analysis INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID 33 1 3-11 JAN 2010

[view all 4 citing articles]

Create Citation Alert

Related Records:

Find similar records based on shared references (from Web of Science).

[view related records]

References: 13

View the bibliography of this

record (from Web of Science).

 $\textbf{Publisher:} \ \texttt{ELSEVIER} \ \ \texttt{SCILTD}, \ \texttt{THE} \ \ \texttt{BOULEVARD}, \ \texttt{LANGFORD} \ \ \texttt{LANE},$

KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND

Subject Category: Thermodynamics; Engineering, Mechanical

IDS Number: 325UU

ISSN: 0140-7007

DOI: 10.1016/j.ijrefrig.2007.09.002

Suggest a correction

If you would like to improve the quality of this product by suggesting corrections, please fill out this form.

Please give us your feedback on using ISI Web of Knowledge.

Acceptable Use Policy
Copyright © 2010 Thomson Reuters

